Abstract
Abstract Most ectotherms follow the temperature‐size rule (TSR): in cold environments individuals grow slowly but reach a large asymptotic length. Intraspecific competition can induce plastic changes of growth rate and asymptotic length and competition may itself be modulated by temperature. Our aim was to disentangle the joint effects of temperature and intraspecific competition on growth rate and asymptotic length. We used two distinct clonal lineages of the Collembola Folsomia candida, to describe thermal reaction norms of growth rate, asymptotic length and reproduction over six temperatures between 6 and 29°C. In parallel, we measured the long‐term size structure and dynamics of springtail populations reared under the same temperatures to measure growth rates and asymptotic lengths in populations and to quantify the joint effects of competition and temperature on these traits. We show that intraspecific competition modulates the temperature‐size rule. In dense populations there is a direct negative effect of temperature on asymptotic length, but there is no temperature dependence of the growth rate, the dominant factor regulating growth being competition. The two lineages responded differently to the joint effects of temperature and competition on growth and asymptotic size and these genetic differences have marked effects on population structure along our temperature gradient. Our results reinforce the idea that the TSR of ectotherms can be modulated by biotic and abiotic stressors when studied in non‐optimal laboratory experiments. Untangling complex interactions between the environment and demography will help to understand how growth trajectories respond to environmental change and how climate change may influence population size structure. A free Plain Language Summary can be found within the Supporting Information of this article.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.