Abstract
Spatially structured populations in patchy habitats show much variation in migration rate, from patchy populations in which individuals move repeatedly among habitat patches to classic metapopulations with infrequent migration among discrete populations. To establish a common framework for population dynamics in patchy habitats, we describe an individual‐based model (IBM) involving a diffusion approximation of correlated random walk of individual movements. As an example, we apply the model to the Glanville fritillary butterfly (Melitaea cinxia) inhabiting a highly fragmented landscape. We derive stochastic patch occupancy model (SPOM) approximations for the IBMs assuming pure demographic stochasticity, uncorrelated environmental stochasticity, or completely correlated environmental stochasticity in local dynamics. Using realistic parameter values for the Glanville fritillary, we show that the SPOMs mimic the behavior of the IBMs well. The SPOMs derived from IBMs have parameters that relate directly to the life history and behavior of individuals, which is an advantage for model interpretation and parameter estimation. The modeling approach that we describe here provides a unified framework for patchy populations with much movements among habitat patches and classic metapopulations with infrequent movements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.