Abstract
We report on a series of behavioral experiments in human computation on three different tasks over networks: graph coloring, community detection (or graph clustering), and competitive contagion. While these tasks share similar action spaces and interfaces, they capture a diversity of computational challenges: graph coloring is a search problem, clustering is an optimization problem, and competitive contagion is a game-theoretic problem. In contrast with most of the prior literature on human-subject experiments in networks, in which collectives of subjects are embedded "in" the network, and have only local information and interactions, here individual subjects have a global (or "over") view and must solve "whole network" problems alone. Our primary findings are that subject performance is impressive across all three problem types; that subjects find diverse and novel strategies for solving each task; and that collective performance can often be strongly correlated with known algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the AAAI Conference on Human Computation and Crowdsourcing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.