Abstract

The field of vertical nanowire array-based applications in cell biology is growing rapidly and an increasing number of applications are being explored. These applications almost invariably rely on the physical properties of the nanowire arrays, creating a need for a better understanding of how their physical properties affect cell behaviour. Here, we investigate the effects of nanowire density on cell migration, division and morphology for murine fibroblasts. Our results show that few nanowires are sufficient to immobilize cells, while a high nanowire spatial density enables a ”bed-of-nails” regime, where cells reside on top of the nanowires and are fully motile. The presence of nanowires decreases the cell proliferation rate, even in the “bed-of-nails” regime. We show that the cell morphology strongly depends on the nanowire density. Cells cultured on low (0.1 μm−2) and medium (1 μm−2) density substrates exhibit an increased number of multi-nucleated cells and micronuclei. These were not observed in cells cultured on high nanowire density substrates (4 μm−2). The results offer important guidelines to minimize cell-function perturbations on nanowire arrays. Moreover, these findings offer the possibility to tune cell proliferation and migration independently by adjusting the nanowire density, which may have applications in drug testing.

Highlights

  • The field of vertical nanowire array-based applications in cell biology is growing rapidly and an increasing number of applications are being explored

  • Murine fibroblasts were cultured on substrates with vertical gallium phosphide (GaP) nanowire arrays (Fig. 1) with a diameter of 80 nm and an average nanowire density ranging from 0.1 μ m−2 to 4 μ m−2

  • We have studied murine fibroblasts cultured on GaP nanowire substrates with varying density, from 0.1 to 4 nanowires μ m−2

Read more

Summary

Introduction

The field of vertical nanowire array-based applications in cell biology is growing rapidly and an increasing number of applications are being explored These applications almost invariably rely on the physical properties of the nanowire arrays, creating a need for a better understanding of how their physical properties affect cell behaviour. The results offer important guidelines to minimize cell-function perturbations on nanowire arrays These findings offer the possibility to tune cell proliferation and migration independently by adjusting the nanowire density, which may have applications in drug testing. We used 4 μ m long gallium phosphide (GaP) nanowire arrays and investigated the effects of nanowire density on cell behaviour, with emphasis on morphology, motility and proliferation. Fluorescence microscopy was used to study cell morphology and scanning electron microscopy (SEM) was used to investigate the cell-nanowire interface

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call