Abstract

Encoding the hierarchical structure of images by p-adic numbers allows for image processing and computer vision methods motivated from arithmetic physics. The p-adic Polyakov action leads to the p-adic diffusion equation in low level vision. Hierarchical segmentation provides another way of p-adic encoding. Then a topology on that finite set of p-adic numbers yields a hierarchy of topological models underlying the image. In the case of chain complexes, the chain maps yield conditions for the existence of a hierarchy, and these can be expressed in terms of p-adic integrals. Such a chain complex hierarchy is a special case of a persistence complex from computational topology, where it is used for computing persistence barcodes for shapes. The approach is motivated by the observation that using p-adic numbers often leads to more efficient algorithms than their real or complex counterparts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call