Abstract

Cardiovascular system functions are impaired in altered gravity conditions. In particular endothelial cells play a major role being responsible for the integrity of the vascular wall. Due to obvious difficulties in performing continuous and exhaustive experiments in space, most of the available data have been obtained so far using various simulators of hypergravity and microgravity (µg) conditions. The consistency of the data resides on the reliability of the simulator, being a critical point in the development of the research. We exposed the cell cultures to 1) hypergravity (launch condition) using MidiCAR at Dutch Experiment Support Center (DESC, NL); 2) simulated µg using the Rotating Wall Vessel (RWV) and the Random Positioning Machine (RPM). We used two different cellular models: human umbilical vein endothelial cells (HUVEC) and human leukocytes (U937). Only few experiments on cells using RPM have been reported. To assess the RPM best operative parameters we considered data from experiments in space on U937 as reference standard. Differently, cultures in modelled µg using RWV have been extensively reported. Our data on HUVEC indicate that the two µg simulators provide analogous results in terms of proliferation and cytoskeletal organization. Finally, to investigate the effects of spaceflight on different human cells, we developed a spaceflight-like protocol consisting of an initial hypergravity phase (launch), followed by a µg simulation (orbital flight). Using this protocol, results show that hypergravity limits in our models the effects on proliferation induced by modelled µg.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.