Abstract

Receptor-interacting protein kinase 1 (RIPK1) is a key regulator of cellular necroptosis, which is considered as an important therapeutic target for necroptosis-related indications. Herein, we report the structural optimization and structure-activity relationship investigations of a series of eutectic 5-substituted-indole-3-carboxamide derivatives. The prioritized compound 10b exhibited low nanomolar IC50 values against RIPK1 and showed good kinase selectivity. Based on its eutectic structure, 10b occupied both the allosteric and ATP binding pockets of RIPK1, making it a potent dual-mode inhibitor of RIPK1. In vitro, 10b had a potent protective effect against necroptosis in cells. Compound 10b also provided robust protection in a TNFα-induced systemic inflammatory response syndrome (SIRS) model and imiquimod (IMQ)-induced psoriasis model. It also showed good pharmacokinetic properties and low toxicity. Overall, 10b is a promising lead compound for drug discovery targeting RIPK1 and warrants further study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.