Abstract
Four types of resorcinol–formaldehyde (RF) aerogels, stiff, brittle, low-flexible, and super-flexible are studied in this work. Despite several studies on mechanical properties on RF aerogels their response when exposed to compressive loading and their fracture behavior are not well investigated. Here, we cover aerogels with a very broad density range of 0.08–0.3 g cm−3 and compressive moduli from 0.12 to 28 MPa. We relate the microstructure of the synthesized aerogels and their behavior under uniaxial compression. Additionally, this work is the first, to our knowledge, to implement the usage of digital image correlation for characterizing the deformation of RF aerogels. The comparison of surface strain distribution of four types of aerogels provides an insight to their reaction on compressive loading.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.