Abstract
These are expanded notes of some talks given during the fall 2002, about homotopical algebraic geometry with special emphasis on its applications to derived algebraic geometry and derived deformation theory. We use the general framework developed in [HAG-I], and in particular the notions of model topology, model sites and stacks over them, in order to define various derived moduli functors and study their geometric properties. We start by defining the model category of D-stacks, with respect to an extension of the etale topology to the category of commutative differential graded algebras, and we show that its homotopy category contains interesting objects, such as schemes, algebraic stacks, higher algebraic stacks, dg-schemes, etc. We define the notion of geometric D-stacks and present some related geometric constructions (O-modules, perfect complexes, K-theory, derived tangent stacks, cotangent complexes, various notions of smoothness, etc.). Finally, we define and study the derived moduli problems classifying local systems on a topological space, vector bundles on a smooth projective variety, and A ∞-categorical structures. We state geometricity and smoothness results for these examples. The proofs of the results presented in this paper will be mainly given in [HAG-II].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.