Abstract
This study addresses the often-overlooked chemistry of germanium compared to the extensively researched carbon and silicon. Using advanced DFT methods, we investigated the thermal decomposition of germolane (germacyclopentane). The suggested mechanisms include a 1,2-H shift and 1,1-H2 elimination to form a pentacyclic germylene (1λ2-germolane). The other pathway involves a stepwise [3 + 2] cycloreversion to form a diradical followed by ethene and germirane. Under M062X/def2-TZVP level of theory, the activation barriers in terms of Gibbs energy (ΔG ‡ 298) for the 1,2-H shift and 1,1-H2 elimination pathways were 240.9 and 236.3 kJ/mol, respectively. The reaction energies (ΔG° 298) for the initiative steps in the 1,2-H shift and 1,1-H2 elimination mechanisms were 102.9 and 96.2 kJ/mol, indicating a thermodynamic and kinetic competition between the two routes. Temperature dependence analysis from 300 to 1200 K reveals that the 1,1-H2 elimination dominates at higher temperatures and is expected to become spontaneous above 1000 K.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.