Abstract

Testing the equivalence principle (EP) has been recognized by the scientific community as a short term prime objective for fundamental physics in space. In 1994 a phase 0/A study of the GeoSTEP mission was initiated by CNES in order to design a space experiment to test the EP at the accuracy of , with the concern to be compatible with the small versatile platform `PROTEUS' under study. The GeoSTEP payload includes a set of four differential accelerometers placed at cryogenic temperature on board a drag-free, three-axis stabilized satellite in low-Earth orbit. Each accelerometer contains a pair of test masses A - A, A - B, A - C, B - C (inner mass - outer mass) made of three different materials A, B, C with decreasing densities. The accelerometer concept is the fully electrostatic levitation and read-out device proposed by ONERA (`SAGE'). The drag-free and attitude control system (DFACS) is monitored by the common mode data of the accelerometers along their three axes, while the expected violation signal is detected by the differential mode data along the longitudinal sensitive axis. The cryostat is a single chamber supercritical helium dewar designed by CEA. Helium boiling off from the dewar feeds a set of proportional gas thrusters performing the DFCAS. Error analysis and data processing preparation is managed by OCA/CERGA. The satellite will be on a 6 am - 6 pm near polar, near circular, Sun-synchronous orbit, at an altitude of 600 to 900 km, depending upon the atmosphere density at the launch date. The mission will last at least 4 months and could be launched in 2002. A descoped, room-temperature version of the project using electric thrusters (FEEPs) and called MidiSTEP has also been considered.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.