Abstract

AbstractWe show that the protocol complex formalization of fault-tolerant protocols can be directly derived from a suitable semantics of the underlying synchronization and communication primitives, based on a geometrization of the state space. By constructing a one-to-one relationship between simplices of the protocol complex and (di)homotopy classes of (di)paths in the latter semantics, we describe a connection between these two geometric approaches to distributed computing: protocol complexes and directed algebraic topology. This is exemplified on atomic snapshot, iterated snapshot and layered immediate snapshot protocols, where a well-known combinatorial structure, interval orders, plays a key role. We believe that this correspondence between models will extend to proving impossibility results for much more intricate fault-tolerant distributed architectures.KeywordsDecision TaskSimplicial ComplexLocal MemoryGlobal MemoryInterval OrderThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.