Abstract

Carbon mineralisation in underground mafic and ultramafic formations, known as in-situ carbon mineralisation, has emerged as an attractive technology for permanent CO2 storage. Despite its potential, this method has received limited attention compared to conventional CO2 storage in sedimentary formations. However, increasing interest from countries and companies in utilising this approach to permanently store CO2 via carbon mineralisation has grown in recent years as part of the wider carbon capture and storage expansion seen globally.This review paper aims to provide an in-depth overview of in-situ carbon mineralisation technology. The paper covers key factors crucial for successful implementation, including water consumption, CO2 injection rate, risk of CO2 leakage, injectivity, fracture characterisation, pressure management and induced seismicity, thermal effects, surface area of minerals, groundwater contamination, injection strategy, monitoring of confinement, and reservoir modelling. The paper also discusses pilot tests and projects, highlighting their outcomes. Furthermore, it discusses the costs associated with in-situ carbon mineralisation and provides a case study.The primary objective of this paper is to increase awareness and understanding of this relatively new technology within the carbon capture and storage industry. By shedding light on the benefits and challenges of carbon mineralisation in mafic and ultramafic formations, this review aims to encourage further research, development, and adoption of this promising approach for CO2 emissions reduction and permanent CO2 storage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.