Abstract
Hopf Galois theory expands the classical Galois theory by con- sidering the Galois property in terms of the action of the group algebra k [ G ] on K/k and then replacing it by the action of a Hopf algebra. We review the case of separable extensions where the Hopf Galois property admits a group-theoretical formulation suitable for counting and classifying, and also to perform explicit computations and explic it descriptions of all the ingredients involved in a Hopf Galois structure. At the end we give just a glimpse of how this theory is used in the context of Ga lois module theory for wildly ramified extensions
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.