Abstract

AbstractFree‐standing CaCO3 materials are an important member in biological systems because of their existence in many natural organisms such as nacre, shell, and crustacean cuticle. However, toughness of those artificial mineral films is sacrificed once their inorganic content is up to 90%, thus free‐standing characteristics have seldom been achieved for CaCO3 films, let alone their real applications. Herein a fast and simple method for constructing hydrogel “bridges” for CaCO3 microparticles is presented, developing highly flexible free‐standing CaCO3 films with only 5% organic content. Such integrated films have underwater superoleophobicity and self‐cleaning function, which guarantee their repeated application in oil/water separation. Furthermore, heavy metal ions can be efficiently removed by simple filtration with the films. Because of the self‐similar structure, the films are able to resist mechanical abrasion without losing the anti‐wetting property and separation efficiency. The free‐standing CaCO3 films are put forward for the first time to practical application, demonstrating the strategy can bring a brilliant prospect to artificial biomineral materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.