Abstract

Fusha structural belt (FSB) is one of the most important tectonic units in front of the Western Kunlun Orogen, northwestern Tibetan Plateau (NW China), in which the Kekeya oil field was discovered in 1971. However, there is no new oil field discovered since then due to the unclarity of the intense and complex Cenozoic deformation in this area. Based on field investigation, seismic interpretation and Continuous Electromagnetic Profile data, we analyze in detail the Cenozoic deformation history, emphasizing on the spatial and temporal variation of the deformation of the FSB in this paper. The result suggests that the FSB was dominated by two deformation events, (1) early (Miocene–early Pliocene) folding event expressed by anticline, with the western segment E–W orienting, while the eastern segment NWW–SEE orienting and (2) later (since late Pliocene) transpressional faulting event that destroyed and divided the earlier anticline into a number of fault blocks. The transpressional faulting caused dextral strike-slip reverse fault, with the dip angles decreasing eastward from ~90° to <45°. The dextral strike-slip reverse fault developed in the core of the anticline in the western part which caused the anticline into several fault blocks, while in the eastern part, the fault developed in the north limb of the anticline with the core of the anticline reserved. Based on the spatial variation of structural characteristics, we propose that the fault block traps and anticline traps in the eastern segment and fault block traps in western segment are favorable for hydrocarbon accumulation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call