Abstract
Technologies to study DNA double-strand break (DSB) repair have traditionally mostly relied on fluorescence read-outs, either by microscopy or flow cytometry. The advent of high throughput sequencing (HTS) has created fundamentally new opportunities to study the mechanisms underlying DSB repair. Here, we review the suite of HTS-based assays that are used to study three different aspects of DNA repair: detection of broken ends, protein recruitment and pathway usage. We highlight new opportunities that HTS technology offers towards a better understanding of the DSB repair process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.