Abstract

<p>Flash floods, as a result of frequent torrential rainfalls caused by tropical storms, thunderstorms,<br>and hurricanes, are a prevalent natural disaster in the southeast U.S. (SEUS), which frequently<br>threaten human lives and properties in the region. According to the U.S. National Weather<br>Service (NWS), flash floods generally initiate within less than six hours of an intense rainfall<br>onset. Therefore, there is a limited chance for effective and timely decision-making. Due to the<br>rapid onset of flash floods, they are costly events, such that only during 1996 to 2017 flash<br>floods imposed 7.5 billion dollars property damage to the SEUS. Therefore, estimating the<br>potential economic damages as a result of flash floods are crucial for flood risk management and<br>financial appraisals for decision makers. A multitude of studies have focused on flood damage<br>modeling, few of which investigated the issue on a large domain. Here, we propose a systematic<br>framework that considers a variety of factors that explain different risk components (i.e., hazard,<br>vulnerability, and exposure) and leverages Machine Learning (ML) for flood damage prediction.<br>Over 14,000 flash flood events during 1996 to 2017 were assessed to analyze their characteristics<br>including frequency, duration, and intensity. Also, different data sources were utilized to derive<br>information related to each event. The most influential features are then selected using a multi<br>criteria variable selection approach. Then, the ML model is implemented for not only binary<br>classification of damage (i.e., whether a flash flood event caused any damage or not), but also for<br>developing a model to predict the financial consequences associated with flash flood events. The<br>results indicate a high accuracy for the classifier, significant correlation and relatively low bias<br>between the predicted and observed property damages showing the effectiveness of proposed<br>methodology for flash flood damage modeling applicable to variety of flood prone regions.</p>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call