Abstract

Since the pioneering observations of Spite & Spite in 1982, the constant lithium abundance of metal-poor ([Fe/H]<-1.3) halo stars near the turnoff has been attributed a cosmological origin. Closer analysis revealed that the observed abundance lies at $\Delta$ Li~0.4 dex below the predictions of Big Bang Nucleosynthesis. The measurements of deuterium abundances on the lines of sight toward quasars and the recent data from the Wilkinson Microwave Anisotropy Probe independently confirmed this gap. We suggest here that part of the discrepancy is explained by the first generation of stars that efficiently depleted lithium. Assuming that the models for lithium evolution in the halo turnoff stars and $\Delta$ Li estimates are correct, we infer that between 1/3 and 1/2 of the baryonic matter of the early halo (~10^9 Mo) was processed through Population III stars. This new paradigm proposes a very economical solution to the lingering difficulty of understanding the properties of the Spite Plateau and its lack of star-to-star scatter down to [Fe/H]=-2.5. It is moreover in agreement both with the absence of lithium detection in the most metal-poor star presently known (HE 1327-2326), and also with new trends of the Plateau suggesting its low metallicity edge may be reached around [Fe/H]=-2.5. We discuss the turbulent mixing associated with enhanced supernovae explosions in the early interstellar medium in this picture. Finally we show that other chemical properties of the extremely metal-poor stars are in agreement with a significant Population III processing in the halo, provided these models include mass-loss and rotationally-induced mixing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.