Abstract

The purpose of this article is twofold. First, we attempt to give a brief overview of the different application areas of quantum electrodynamics (QED). These include fundamental physics (prediction of atomic energy levels), where the atom may be exposed to additional external fields (hyperfine splitting and g factor). We also mention QED processes in highly intense laser fields and more applied areas like Casimir and Casimir–Polder interactions. Both the unifying aspects as well as the differences in the the theoretical treatment required by these application areas (such as the treatment of infinities) are highlighted. Second, we discuss an application of the formalism in the fundamentally interesting area of the prediction of energy levels, namely, the hyperfine structure of P states of muonic hydrogen.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.