Abstract

This chapter is aimed at studying the anomalous magnetic properties (glassy behaviour) observed at low temperatures in nanoparticles of ferrimagnetic oxides. This topic is discussed both from numerical results and experimental data. Ferrimagnetic fine particles show most of the features of glassy systems due to the random distribution of anisotropy axis, interparticle interactions and surface effects. Experiments have shown that the hysteresis loops display high closure fields with high values of the differential susceptibility. Low magnetisation as compared to bulk, shifted loops after field-cooling, highfield irreversibilities between zero-field and field cooling processes and ageing phenomena in the time-dependence of the magnetisation, are also observed. This phenomenology indicates the existence of some kind of freezing phenomenon arising from a complex hierarchy of the energy levels, whose origin is currently under discussion. Two models have been proposed to account for it: i) the existence of a spin-glass state at the surface of the particle which is coupled to the particle core through an exchange field; and ii) the collective behaviour induced by interparticle interactions. In real systems, both contributions simultaneously occur, being difficult to distinguish their effects. In contrast, numerical simulations allow us to build a model just containing the essential ingredients to study solely one of two phenomena.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.