Abstract

Problems in computational finance share many of the characteristics that challenge us in statistical circuit analysis: high dimensionality, profound nonlinearity, stringent accuracy requirements, and expensive sample simulation. We offer a detailed experimental study of how one celebrated technique from this domain - quasi-Monte Carlo (QMC) analysis - can be used for fast statistical circuit analysis. In contrast with traditional pseudo-random Monte Carlo sampling, QMC substitutes a (shorter) sequence of deterministically chosen sample points. Across a set of digital and analog circuits, in 90nm and 45nm technologies, varying in size from 30 to 400 devices, we obtain speedups in parametric yield estimation from 2times to 50times

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.