Abstract

The synthesis of silver nanoparticles (AgNPs) using environmentally friendly methods has become increasingly important due to its sustainability and cost-effectiveness. This study investigates the green synthesis of AgNPs using gall extracts from the plant Ficus recemosa, known for its high phytochemical content. The formation of AgNPs was verified through multiple analytical techniques, including UV-Vis spectroscopy, Fourier-transform infrared (FTIR) spectroscopy, transmission electron microscopy (TEM), zeta potential analysis, and dynamic light scattering (DLS). The UV-Vis spectroscopy results displayed a distinct surface plasmon resonance peak indicative of AgNP formation. FTIR analysis revealed specific interactions between silver ions and phytochemicals in the gall extract, while TEM images confirmed the nanoscale morphology and size of the synthesized particles. Zeta potential and DLS analyses provided insights into the stability and size distribution of the AgNPs, demonstrating good colloidal stability. Biological properties of the AgNPs were assessed through various assays. Antimicrobial activity was tested using the disc diffusion method against Escherichia coli and Staphylococcus aureus, showing significant inhibitory effects. The anticancer potential was evaluated using the trypan blue exclusion assay on Dalton's Lymphoma Ascites (DLA) cells, revealing considerable cytotoxicity. Additionally, antimitotic activity was studied in the dividing root cells of Allium cepa, where the AgNPs significantly inhibited cell division. This research highlights the effective use of F. recemosa gall extracts for the green synthesis of AgNPs, presenting an eco-friendly approach to producing nanoparticles with strong antimicrobial, anticancer, and antimitotic properties. The promising results suggest potential applications of these biogenic AgNPs in medical and agricultural sectors, paving the way for further exploration and utilization.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.