Abstract

In this work we revisit the topic of two-dimensional Bose–Einstein condensates under the influence of time-dependent magnetic confinement and time-dependent scattering length. A moment approach reduces the examination of moments of the wavefunction (in particular, of its width) to an Ermakov–Pinney (EP) ordinary differential equation (ODE). We use the well-known structure of the solutions of this nonlinear ODE to “engineer” trapping and interatomic interaction conditions that lead to condensates dispersing, breathing or even collapsing. The advantage of the approach is that it is fully tractable analytically, in excellent agreement with our numerical observations. As an aside, we also discuss how similar time-dependent EP equations may arise in the description of anisotropic scalar field cosmologies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.