Abstract
In this paper, the rigorous linking of exact stochastic models to mean-field approximations is studied. Using a continuous-time Markov chain, we start from the exact formulation of a simple epidemic model on a certain class of networks, including completely connected and regular random graphs, and rigorously derive the well-known mean-field approximation that is usually justified based on biological hypotheses. We propose a unifying framework that incorporates and discusses the details of two existing proofs and we put forward a new ordinary differential equation (ODE)-based proof. The more well-known proof is based on a first-order partial differential equation approximation, while the other, more technical one, uses Martingale and Semigroup theory. We present the main steps of both proofs to investigate their applicability in different modelling contexts and to make these ideas more accessible to a broader group of applied researchers. The main result of the paper is a new ODE-based proof that may serve as a building block to prove similar convergence results for more complex networks. The new proof is based on deriving a countable system of ODEs for the moments of a distribution of interest and proving a perturbation theorem for this infinite system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.