Abstract

In this paper, we review the approach leading to cosmic polarization rotation observation and present the current status with an outlook. In the study of the relations among equivalence principles, we found that long-range pseudoscalar-photon interaction is allowed. Pseudoscalar-photon interaction would induce a rotation of linear polarization of electromagnetic wave propagating with cosmological/astrophysical distance. In 2002, DASI successfully observed the polarization of the cosmological microwave background radiation. In 2003, WMAP observed the correlation of polarization with temperature anisotropy at more than 10 sigma in the cosmological microwave background. From this high polarization-temperature correlation in WMAP observation, we put a limit of 0.1 rad on the rotation of linear polarization of cosmological microwave background (CMB) propagation. Pseudoscalar-photon interaction is proportional to the gradient of the pseudoscalar field. From phenomenological point of view, this gradient could be neutrino number asymmetry current, other density current, or a constant vector. In these situations, Lorentz invariance or CPT may or may not effectively be violated. In this paper, we review and compile various results. Better accuracy in CMB polarization observation is expected from PLANCK mission to be launched next year. A dedicated CMB polarization observer in the future would probe this fundamental issue more deeply.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.