Abstract

AbstractSelective electrochemical production of valued chemicals is of significant importance but remains a great challenge in chemistry. Conventional approaches for enhancing reaction selectivity focus on the improvement of the catalysts themselves. In this work, we systematically studied the reaction kinetics and mass transport behavior of LaNiO3 nanocubes (LaNiO3 NCs) catalyzed hydrogen peroxide reduction reaction (HPRR) at ensemble and single nanoparticle levels using nano‐impact electrochemistry (NIE). We find that the selectivity of HPRR was altered at individual random‐walk nanoparticles as compared to their ensemble counterpart without changing the reaction kinetics, due to the significantly enhanced mass transport at single nanoparticles. This discovery offers the scope of new catalytic approaches for engineering electrochemical reactions in general.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.