Abstract

ABSTRACTA simple way to extend the remarkable results of Density Functional calculations to finite-temperature properties of materials is the quasi-harmonic theory of Lattice Dynamics. In this framework a thermodynamically consistent theory needs the complete phonon spectrum for a large periodic system (30–100 atoms/cell) at many different volumes, which poses severe practical limitations. In this paper I present the application to a semiconducting system of a method recently proposed by Bachelet and De Lorenzi to overcome these limitations. Based on low-temperature Molecular-Dynamics trajectories (now possible from first principles for semiconducting systems according to the method of Car and Parrinello), the method is shown to provide accurate dynamical matrices for an 8-atom silicon supercell. Such a successful, preliminary test, together with the fact that for larger and/or lower-symmetry systems the computational effort required by the “trajectory approach” is lower than traditional frozen-phonon or force-constant techniques, suggests its use in the determination of dynamical matrices of larger defect or amorphous systems, and thus in the study of their thermodynamics from first principles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.