Abstract

BackgroundArthropod diversity is unparalleled in the animal kingdom. The study of ontogeny is pivotal to understand which developmental processes underlie the incredible morphological disparity of arthropods and thus to eventually unravel evolutionary transformations leading to their success. Work on laboratory model organisms has yielded in-depth data on numerous developmental mechanisms in arthropods. Yet, although the range of studied taxa has increased noticeably since the advent of comparative evolutionary developmental biology (evo-devo), several smaller groups remain understudied. This includes the bizarre Pycnogonida (sea spiders) or “no-bodies”, a taxon occupying a crucial phylogenetic position for the interpretation of arthropod development and evolution.ResultsPycnogonid development is variable at familial and generic levels and sometimes even congeneric species exhibit different developmental modes. Here, we summarize the available data since the late 19th century. We clarify and resolve terminological issues persisting in the pycnogonid literature and distinguish five developmental pathways, based on (1) type of the hatching stage, (2) developmental-morphological features during postembryonic development and (3) selected life history characteristics. Based on phylogenetic analyses and the fossil record, we discuss plausible plesiomorphic features of pycnogonid development that allow comparison to other arthropods. These features include (1) a holoblastic, irregular cleavage with equal-sized blastomeres, (2) initiation of gastrulation by a single bottle-shaped cell, (3) the lack of a morphologically distinct germ band during embryogenesis, (4) a parasitic free-living protonymphon larva as hatching stage and (5) a hemianamorphic development during the postlarval and juvenile phases. Further, we propose evolutionary developmental trajectories within crown-group Pycnogonida.ConclusionsA resurgence of studies on pycnogonid postembryonic development has provided various new insights in the last decades. However, the scarcity of modern-day embryonic data – including the virtual lack of gene expression and functional studies – needs to be addressed in future investigations to strengthen comparisons to other arthropods and arthropod outgroups in the framework of evo-devo. Our review may serve as a basis for an informed choice of target species for such studies, which will not only shed light on chelicerate development and evolution but furthermore hold the potential to contribute important insights into the anamorphic development of the arthropod ancestor.

Highlights

  • Arthropod diversity is unparalleled in the animal kingdom

  • Arthropod evolution has led to an overwhelming species richness, which goes hand in hand with an extraordinary disparity of morphological forms (e.g., [1])

  • When attempting to unravel the evolutionary transformations that underlay the appearance of this multitude of arthropod forms, the study of development can contribute significant insights (e.g., [2])

Read more

Summary

Introduction

Arthropod diversity is unparalleled in the animal kingdom. The study of ontogeny is pivotal to understand which developmental processes underlie the incredible morphological disparity of arthropods and to eventually unravel evolutionary transformations leading to their success. In laboratory cultures of Pycnogonum litorale – the best investigated representative of developmental type 1 – five molts from protonymphon larva to the last postlarval instar have been observed [39, 41].

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.