Abstract
In recent years, research on movement primitives has gained increasing popularity. The original goals of movement primitives are based on the desire to have a sufficiently rich and abstract representation for movement generation, which allows for efficient teaching, trial-and-error learning, and generalization of motor skills (Schaal 1999). Thus, motor skills in robots should be acquired in a natural dialog with humans, e.g., by imitation learning and shaping, while skill refinement and generalization should be accomplished autonomously by the robot. Such a scenario resembles the way we teach children and connects to the bigger question of how the human brain accomplishes skill learning. In this paper, we review how a particular computational approach to movement primitives, called dynamic movement primitives, can contribute to learning motor skills. We will address imitation learning, generalization, trial-and-error learning by reinforcement learning, movement recognition, and control based on movement primitives. But we also want to go beyond the standard goals of movement primitives. The stereotypical movement generation with movement primitives entails predicting of sensory events in the environment. Indeed, all the sensory events associated with a movement primitive form an associative skill memory that has the potential of forming a most powerful representation of a complete motor skill.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.