Abstract

We study how to relate well-known hypergraph grammars based on the double pushout (DPO) approach and grammars over the hypergraph Lambek calculus HL (called HL-grammars). It turns out that DPO rules can be naturally encoded by types of HL using methods similar to those used by Kanazawa for multiplicative-exponential linear logic. In order to generalize his reasonings we extend the hypergraph Lambek calculus by adding the exponential modality, which results in a new calculus HMEL0; then we prove that any DPO grammar can be converted into an equivalent HMEL0-grammar. We also define the conjunctive Kleene star, which behaves similarly to this exponential modality, and establish a similar result. If we add neither the exponential modality nor the conjunctive Kleene star to HL, then we can still use the same encoding and show that any DPO grammar with a linear restriction on the length of derivations can be converted into an equivalent HL-grammar.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.