Abstract

It is well known that layered systems can present giant magnetoresistance (GMR). Particularly, the multilayers Fe N /Cu 8/Fe M /Cr/ Fe M /Cu 8 show inverse GMR. That is, the electrical conductivity decreases with the applied magnetic field. In the most common multilayers the conductivity increases with the applied field and this kind of GMR is called direct. In general the GMR is attributed to spin-dependent scattering in the bulk and mainly at interfaces. In this work we calculate the electronic band contribution to the GMR for Fe 3/Cu 4/Fe/Cr/Fe/Cu 4 and Fe 3/Cu 4 multilayers within the semiclassical approximation. The electrical conductivity is obtained in the ballistic and diffusive regimes. The results show a large change in the GMR behavior when one layer of Cr is introduced within the Fe layers. The GMR calculated in the CPP configuration (current flowing perpendicular to layers) of Fe 3/Cu 4 is of the direct type, with a value of about 40% while that obtained for Fe 3/Cu 4/Fe/Cr/Fe/Cu 4 is inverse and of the order of 45%. In the CIP configuration (current flowing parallel to the layers) the calculated GMR is direct with a value of about 35% for the system without Cr while, by the introduction of Cr, we obtain also a direct GMR but of about 3%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.