Abstract

Integral Non-Local (INL) formulations are often used to regularize Continuum Damage computations, in the presence of stress softening for instance. The introduction of a characteristic/internal length allows for avoiding pathological mesh dependency. Some questions concerning the identification of the characteristic length, its possible evolution during damage process and the need for special treatments of non-locality operators near boundaries (e.g. edges, cracks) are however still open. A physical request is that material points separated by a crack (or an highly damaged zone) should not interact. Despite what is done in standard Integral Non-Local theories, this can be obtained by allowing non-local interactions to evolve depending on mechanical fields (e.g. damage, strain, stress). The Eikonal Non-Local (ENL) formulation provides a novel interpretation of damage dependent non-local interactions. Based on the Wentzel–Kramers–Brillouin (WKB) approximation for high-frequency wave propagation in a damaged medium, this formulation defines the interaction distances as the solution of a stationary damage dependent Eikonal equation. It allows for the modeling of non-local interactions which gradually vanish in damaged zones, thus ensuring a progressive transition from diffuse damage to fracture in a natural way. The numerical implementation and properties of this regularization technique are investigated and discussed. From a numerical viewpoint, a Fast Marching method is used to compute non-local interaction distances between Gauss integration points. Geodesic distances are then used to define the kernel of weighting function to be used in integral non-local averaging. Several numerical results of quasi-statics simulations of quasi-brittle fracture in isotropic media are presented.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call