Abstract

Abstract Denoising diffusions are state-of-the-art generative models exhibiting remarkable empirical performance. They work by diffusing the data distribution into a Gaussian distribution and then learning to reverse this noising process to obtain synthetic datapoints. The denoising diffusion relies on approximations of the logarithmic derivatives of the noised data densities using score matching. Such models can also be used to perform approximate posterior simulation when one can only sample from the prior and likelihood. We propose a unifying framework generalizing this approach to a wide class of spaces and leading to an original extension of score matching. We illustrate the resulting models on various applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.