Abstract

AbstractDeduction graphs [3] provide a formalism for natural deduction, where the deductions have the structure of acyclic directed graphs with boxes. The boxes are used to restrict the scope of local assumptions. Proof nets for multiplicative exponential linear logic (MELL) are also graphs with boxes, but in MELL the boxes have the purpose of controlling the modal operator !. In this paper we study the apparent correspondences between deduction graphs and proof nets, both by looking at the structure of the proofs themselves and at the process of cut-elimination defined on them. We give two translations from deduction graphs for minimal proposition logic to proof nets: a direct one, and a mapping via so-called context nets. Context nets are closer to natural deduction than proof nets, as they have both premises (on top of the net) and conclusions (at the bottom). Although the two translations give basically the same results, the translation via context nets provides a more abstract view and has the advantage that it follows the same inductive construction as the deduction graphs. The translations behave nicely with respect to cut-elimination.KeywordsAcyclic Directed GraphTerminal NodeNatural DeductionInitial NodeConclusion NodeThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.