Abstract
While π-bonds typically undergo cycloaddition with ozone, resulting in the release of much-noticed carbonyl O-oxide Criegee intermediates, lone-pairs of electrons tend to selectively accept a single oxygen atom from O3, producing singlet dioxygen. We questioned whether the introduction of potent electron-donating groups, akin to N-heterocyclic olefins, could influence the reactivity of double bonds - shifting from cycloaddition to oxygen atom transfer or generating lesser-known, yet stabilized, donor-substituted Criegee intermediates. Consequently, we conducted a comparative computational study using density functional theory on a series of model olefins with increasing polarity due to (asymmetric) π-donor substitution. Reaction path computations indicate that highly polarized double bonds, instead of forming primary ozonides in their reaction with O3, exhibit a preference for accepting a single oxygen atom, resulting in a zwitterionic species formally identified as a carbene-carbonyl adduct. This previously unexplored reactivity potentially introduces aldehyde umpolung chemistry (Breslow intermediate) through olefin ozonolysis. Considering solvent effects implicitly reveals that increased solvent polarity further directs the trajectories toward a single oxygen atom transfer reactivity by stabilizing the zwitterionic character of the transition state. The competing modes of chemical reactivity can be explained by a bifurcation of the reaction valley in the post-transition state region.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.