Abstract

Coulomb and nuclear dissociation of $^{17}$Ne on light and heavy targets are studied theoretically. The dipole E1 strength function is determined in a broad energy range including energies of astrophysical interest. Dependence of the strength function on different parameters of the $^{17}$Ne ground state structure and continuum dynamics is analyzed in a three-body model. The discovered dependence plays an important role for studies of the strength functions for the three-body E1 dissociation and radiative capture. The constraints on the $[s^2]/[d^2]$ configuration mixing in $^{17}$Ne and on $p$-wave interaction in the $^{15}$O+$p$ channel are imposed based on experimental data for $^{17}$Ne Coulomb dissociation on heavy target.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.