Abstract

Problems of data classification can be studied in the framework of regularization theory as ill-posed problems. In this framework, loss functions play an important role in the application of regularization theory to classification. In this paper, we review some important convex loss functions, including hinge loss, square loss, modified square loss, exponential loss, logistic regression loss, as well as some non-convex loss functions, such as sigmoid loss, φ-loss, ramp loss, normalized sigmoid loss, and the loss function of 2 layer neural network. Based on the analysis of these loss functions, we propose a new differentiable nonconvex loss function, called smoothed 0-1 loss function, which is a natural approximation of the 0-1 loss function. To compare the performance of different loss functions, we propose two binary classification algorithms for binary classification, one for convex loss functions, the other for non-convex loss functions. A set of experiments are launched on several binary data sets from the UCI repository. The results show that the proposed smoothed 0-1 loss function is robust, especially for those noisy data sets with many outliers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.