Abstract
In this paper, we present a study on the contribution of silicon nanocrystals to the electrical transport characteristics of large (100 μm × 100 μm) and small (100 nm × 100 nm) metal-oxide-semiconductor (MOS) capacitors at room temperature. A layer of silicon nanocrystals is synthesized within the oxide of these capacitors by ultra-low energy ion implantation and annealing. Several features including negative differential resistance (NDR), sharp current peaks and random telegraph signal (RTS) are demonstrated in the current–voltage and current–time characteristics of these capacitors. These features have been associated to charge storage in silicon nanocrystals and to the resulting Coulomb interaction between the stored charges and the tunneling current. Clear transition from a continuous response of large capacitors to a discrete response of small capacitors reveals the quantized nature of the charge storage phenomenon in these nanocrystalline dots.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.