Abstract

Major Depressive Disorder (MDD) is a significant neurological condition associated with aberrations in brain functional networks. Traditional studies have predominantly analyzed these from a network topology perspective. However, given the brain’s dynamic and complex nature, exploring its mechanisms from a network control standpoint provides a fresh and insightful framework. This research investigates the integration of network controllability and machine learning to pinpoint essential biomarkers for MDD using functional magnetic resonance imaging (fMRI) data. By employing network controllability methods, we identify crucial brain regions that are instrumental in facilitating transitions between brain states. These regions demonstrate the brain’s ability to navigate various functional states, emphasizing the utility of network controllability metrics as potential biomarkers. Furthermore, these metrics elucidate the complex dynamics of MDD and support the development of precision medicine strategies that incorporate machine learning to improve the precision of diagnostics and the efficacy of treatments. This study underscores the value of merging machine learning with network neuroscience to craft personalized interventions that align with the unique pathological profiles of individuals, ultimately enhancing the management and treatment of MDD.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.