Abstract

This paper is concerned with the mathematical derivation of the inhomoge-neous incompressible Navier-Stokes equations (INS) from the compressible Navier-Stokes equations (CNS) in the large volume viscosity limit. We first prove a result of large time existence of regular solutions for (CNS). Next, as a consequence, we establish that the solutions of (CNS) converge to those of (INS) when the volume viscosity tends to infinity. Analysis is performed in the two dimensional torus, for general initial data. In particular, we are able to handle large variations of density.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.