Abstract

All relevant steps of discontinuous thin film growth of para-hexaphenylene on muscovite mica (0 0 1) from wetting layer over small and large clusters to nanofibers are observed and investigated in detail by a combined polarized fluorescence and atomic force microscopy study. From a variation of film thickness and surface temperature, we determine effective activation energies for cluster growth of 0.17 eV, for nanofiber length growth of 0.46 eV, for width growth of 0.19 eV, and for height growth of 0.07 eV. The corresponding exponential prefactors for the nanofiber growth are 1 x 10(9), 6 x 10(4), and 3 x 10(2) nm. Polarized fluorescence studies reveal that nanofibers grow along the grooves of the mica surface and that they do not change direction if they cross an even number of mica surface steps, while they change direction by 120 degrees for an odd number of steps. These results are taken as an input for a model of the unidirectional growth process on mica. Absolute parameters allowing one to grow nanofibers of predetermined morphology via organic molecular beam epitaxy are also given.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.