Abstract

We study the crossover from classical to quantum phase transitions at zero temperature within the framework of $\phi^4$ theory. The classical transition at zero temperature can be described by the Landau theory, turning into a quantum Ising transition with the addition of quantum fluctuations. We perform a calculation of the transition line in the regime where the quantum fluctuations are weak. The calculation is based on a renormalization group analysis of the crossover between classical and quantum transitions, and is well controlled even for space-time dimensionality $D$ below 4. In particular, for $D=2$ we obtain an analytic expression for the transition line which is valid for a wide range of parameters, as confirmed by numerical calculations based on the Density Matrix Renormalization Group. This behavior could be tested by measuring the phase diagram of the linear-zigzag instability in systems of trapped ions or repulsively-interacting dipoles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.