Abstract

A single-sided boundary is introduced in the three-dimensional Chern–Simons model. It is shown that only one boundary condition for the gauge fields is possible, which plays the twofold role of chirality condition and bosonization rule for the two-dimensional Weyl fermion describing the degrees of freedom of the edge states of the Fractional Quantum Hall Effect. The symmetry on the boundary is derived, which determines the effective two-dimensional action, whose equation of motion coincides with the continuity equation of the Tomonaga–Luttinger theory. The role of Lorentz symmetry and of discrete symmetries on the boundary is also discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.