Abstract

This paper discusses the global chemical kinetics of corona plasma-induced chemical reactions for pollution control. If there are no significant radical termination reactions, the pollution removal linearly depends on the corona energy density and/or the energy yield is a constant. If linear radical termination reactions play a dominant role, the removal rate shows experimental functions in terms of the corona energy density. If the radical concentration is significantly affected by nonlinear termination reactions, the removal rate depends on the square root of the corona energy density. These characteristics are also discussed with examples of VOCs and NOx removal and multiple processing. Moreover, this paper also discusses how to match a corona plasma reactor with a voltage pulse generator in order to increase the total energy efficiency. For a given corona reactor, a minimum peak voltage is found for matching a voltage pulse generator. Optimized relationship between the voltage rise time, the output impedance of a voltage pulse generator, and the stray capacitance of a corona reactor is presented. As an example, the paper discusses a 5.0-kW hybrid corona nonthermal plasma system for NOx removal from exhaust gases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.