Abstract

We study thermodynamic phase transitions between integrable and chaotic dynamics. We do so by analyzing models that interpolate between the chaotic double scaled Sachdev-Ye-Kitaev (SYK) and the integrable p-spin systems, in a limit where they are described by chord diagrams. We develop a path integral formalism by coarse graining over the diagrams, which we use to argue that the system has two distinct phases: one is continuously connected to the chaotic system, and the other to the integrable. They are separated by a line of first order transition that ends at some finite temperature. Published by the American Physical Society 2024

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.