Abstract

We probe the contraction from $2d$ relativistic CFTs to theories with Bondi-Metzner-Sachs (BMS) symmetries, or equivalently Conformal Carroll symmetries, using diagnostics of quantum chaos. Starting from an Ultrarelativistic limit on a relativistic scalar field theory and following through at the quantum level using an oscillator representation of states, one can show the CFT$_2$ vacuum evolves smoothly into a BMS$_3$ vacuum in the form of a squeezed state. Computing circuit complexity of this transmutation using the covariance matrix approach shows clear divergences when the BMS point is hit or equivalently when the target state becomes a boundary state. We also find similar behaviour of the circuit complexity calculated from methods of information geometry. Furthermore, we discuss the hamiltonian evolution of the system and investigate Out-of-time-ordered correlators (OTOCs) and operator growth complexity, both of which turn out to scale polynomially with time at the BMS point.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call