Abstract

Polymorphs of ZnHPO3·2H2O with centrosymmetry (Cmcm) and noncentrosymmetry (C2) structures were prepared by modified solution evaporation and seed-crystal-induced secondary nucleation methods. In Cmcm-ZnHPO3·2H2O, the zinc atoms are only octahedrally coordinated, while in C2-ZnHPO3·2H2O, they feature both tetrahedral and octahedral coordination. As a result, Cmcm-ZnHPO3·2H2O features a 2D layered structure with lattice water molecules located in the interlayer space, while C2-ZnHPO3·2H2O features a 3D electroneutral framework of tfa topology connected by Zn(1)O4, Zn(2)O6, and HPO3 units. The UV-visible diffuse reflectance spectra associated with Tauc's analyses give a direct bandgap of 4.24 and 4.33 eV for Cmcm-ZnHPO3·2H2O and C2-ZnHPO3·2H2O, respectively. Moreover, C2-ZnHPO3·2H2O exhibits a weak second harmonic generation (SHG) response and a moderate birefringence for phase matching, indicating its potential as a nonlinear optical material. Detailed dipole moment calculation and analysis confirmed that the SHG response mainly derived from the HPO3 pseudo-tetrahedra.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call