Abstract

Principles of methods for studying particles and fields that cannot be sensed by third-person observers by routine methods can be used to understand the physics of first-person properties of mind. Accordingly, whenever a system exhibits disparate features at multiple levels, unique combination of constraints offered by them direct us towards a solution that will be the first principle of that system. Using this method, it was possible to arrive at a third-person observable solution-point of brain-mind interface. Examination of this location identified a set of unique features that can allow an associatively learned (cue) stimulus to spark hallucinations that form units of first-person internal (inner) sensations reminiscent of stimuli from the associatively learned second item in timescales of milliseconds. It allows us to peep into a virtual space of mind where different modifications and integrations of units of internal sensations generate their different net conformations ranging from perception to an inner sense of hidden relationships that form a hypothesis. Since sparking of inner sensations of the late arriving (when far away) or non-arriving (when hidden) features of items started providing survival advantage, the focus of evolution might have been to optimize this property. Hence, the circuity that generates it can be considered as the primary circuitry of the system. The solution provides several testable predictions. By taking readers through the process of deriving the solution and by explaining how it interconnects disparate findings, it is hoped that the factors determining the physics of mind will become evident.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call