Abstract

AbstractCombining a strong second‐order nonlinear optical (NLO) effect (>1×KH2PO4 (KDP)), a large band gap (>4.2 eV), and a moderate birefringence in ultraviolet (UV) NLO crystals remains a formidable challenge. Herein, Cd(SCN)2(C4H6N2)2, the first example of a thiocyanate capable of realizing a phase‐matched UV NLO crystal material, is obtained by reducing the sulfur (S) content in the centrosymmetric (CS) structure of Cd(SCN)2(CH4N2S)2. Compared to the “shoulder‐to‐shoulder” one‐dimensional (1D) chain of Cd(SCN)2(CH4N2S)2, Cd(SCN)2(C4H6N2)2 has a different sawtooth 1D chain structure. Cd(SCN)2(CH4N2S)2 has second harmonic generation (SHG) inertia with a band gap of 3.90 eV and a UV cutoff edge of 342 nm, however, it possesses a large birefringence (0.35@546 nm). In contrast, the symmetry center breaking of Cd(SCN)2(C4H6N2)2 leads to remarkably strong SHG intensity (10 times that of KDP). Furthermore, it has a wide band gap (4.74 eV), short UV cutoff edge (234 nm), and moderate birefringence capable of phase matching (0.17@546 nm). This research indicates that thiocyanates are a promising class of UV NLO crystal materials, and that modulation of the sulfur content of CS thiocyanates is an effective strategy for the development of UV NLO crystals with excellent overall performances.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.